Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dichlorobis(1,2-phenylenediamine)nickel(II)

Karen R. Maxcy et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

electronic papers

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Dichlorobis(1,2-phenylenediamine)nickel(II)

Karen R. Maxcy,^a Randy Smith,^a Roger D. Willett^a* and Ashwani Vij^b

^aDepartment of Chemistry, Washington State University, Pullman, WA 99164, USA, and ^bUniversity Research Office, University of Idaho, Moscow, Idaho, USA Correspondence e-mail: willett@mail.wsu.edu

Received 31 July 2000 Accepted 11 September 2000

Data validation number: IUC0000256

The title compound, $[NiCl_2(C_6H_8N_2)_2]$, contains centrosymmetric molecules with two phenylenediamine ligands coordinated in a bidentate fashion. The Ni–N distances are 2.088 (1) and 2.096 (1) Å, and the Ni–Cl distance of 2.4635 (4) Å. The plane of each phenylenediamine molecule makes a dihedral angle of 26.53 (7)° with the NiN₄ plane. Extensive hydrogen bonding leads to distinct cleavage in the *bc* plane.

Comment

The title compound, (I), was prepared for use as a starting material in the synthesis of Haldane Gap systems (Haldane, 1983). The latter can be realised by linear-chain systems of antiferromagnetically coupled S = 1 species.

Experimental

The title compound was prepared by the reaction of 1,2-phenylenediamine dihydrochloride (0.989 g, 5.46 mmol) with NiCl₂·6H₂O (0.386 g, 2.00 mmol) in water (30 ml) under a nitrogen atmosphere for 5 d. The solution was then stored in a sealed tube at room temperature. After 8 d, brown rod-shaped crystals had formed. They were removed by filtration and washed with cold water.

Crystal data

 $\begin{bmatrix} \text{NiCl}_2(C_6H_8N_2)_2 \end{bmatrix}$ $M_r = 345.90$ Monoclinic, $P2_1/c$ a = 11.3793 (2) Å b = 5.9240 (1) Å c = 12.1901 (1) Å $\beta = 115.31^\circ$ V = 742.841 (19) Å³ Z = 2

Data collection

CCD diffractometer ω scans Absorption correction: empirical (*SADABS*; Bruker, 1997) $T_{min} = 0.650$, $T_{max} = 0.780$ 4572 measured reflections 1758 independent reflections 1702 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.023 $wR(F^2) = 0.057$ S = 1.2181758 reflections 121 parameters All H-atom parameters refined
$$\begin{split} D_x &= 1.546 \text{ Mg m}^{-3} \\ \text{Mo } K\alpha \text{ radiation} \\ \text{Cell parameters from 4572} \\ \text{reflections} \\ \theta &= 1.98-28.19^{\circ} \\ \mu &= 1.656 \text{ mm}^{-1} \\ T &= 213 \text{ (2) K} \\ \text{Block, green} \\ 0.35 \times 0.20 \times 0.15 \text{ mm} \end{split}$$

$$\begin{split} R_{\rm int} &= 0.022 \\ \theta_{\rm max} &= 28.19^{\circ} \\ h &= -15 \rightarrow 10 \\ k &= -7 \rightarrow 7 \\ l &= -15 \rightarrow 16 \\ 50 \text{ frames standard reflections} \\ \text{frequency: beginning and end} \\ \text{intensity decay: none} \end{split}$$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0134P)^2 \\ &+ 0.3976P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ SHELXL97} \\ {\rm Extinction \ coefficient: \ 0.0137 \ (12)} \end{split}$$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

The use of the single-crystal diffraction facility in the Office of Research at the University of Idaho is appreciated.

References

Bruker (1997). SADABS, SMART (Version 4.045) and SAINT (Version 4.035). Bruker AXS Inc., Madison, Wisconsin, USA.

Haldane, F. D. M. (1983). Phys. Rev. Lett. 50, 1153-1156.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.